Resultantens räkning:

$$R = mg$$

Newton II på flygplanet ger

$$\tan \alpha = \frac{R}{F_g} = \frac{mg}{mg} \Rightarrow R = mg \tan \alpha$$

Om u enbart skulle bestämma omloppstiden hade vi kunnat använda:

$$a = \frac{2\pi^2 r}{t^2}$$

$$v = c_1 \sqrt{gr \tan \alpha} = \sqrt{982 \cdot 0.73 \cdot \tan 45.7^\circ \cdot m/s^2} = 2.71 m/s$$

$$0 \text{ omloppstiden f"ar ur}$$

$$v = \frac{2\pi r}{T} \Rightarrow T = \frac{2\pi r}{v} = \frac{2\pi \cdot 0.73}{2.71} s = 1.69 s$$

Max/min-bereckning (vises ej h"ar) ger

$$T = (1.69 \pm 0.19) s$$

Svar: Farten 2.7 m/s, omloppstiden 1.7 s.