Läget runt 1920

Läget runt 1920

	Partikelegenskaper	Vågegenskaper
Materia	$p = mv$ $W_k = \frac{mv^2}{2}$ $\boxed{R = \dot{p}}$ Ja! (mekanik) $p = \gamma mv$ $E_k = (\gamma - 1)mc^2$?
Strålning	$p = \frac{h}{\lambda} \qquad W = hf$ Ja! (fotonmodellen)	E,B Ja! (elektromagnetism, optik)

Dubbelspaltexperiment med fotoner (2005)

Fig. 1. (Color online) From particles to waves: Detection of light diffracted from a double slit on a photon by photon basis using a single-photon imaging CCD camera. Although single frames show an apparently random distribution of photon impact points, their integration reveals the classical fringe pattern.

Materiens vågegenskaper

Einstein (1916):

Fotoner: p =

[10]

de Broglie (1924):

"materievåglängd"

Varje partikel kan tillskrivas en våglängd

partikelns rörelsemängd

Plancks

konstant

Waves and Quanta.

The quantum relation, energy = $h \times \text{frequency}$, leads one to associate a periodical phenomenon with any isolated portion of matter or energy. An observer bound to the portion of matter will associate with it a frequency determined by its internal energy, namely, by its "mass at rest." An observer for whom a portion of matter is in steady motion with [11]

Fotoner: $p = \frac{h}{\lambda} \implies \lambda = \frac{h}{p}$

Materiens vågegenskaper

de Broglie (1924):

"materievåglängd"

Varje partikel kan tillskrivas en våglängd

Plancks konstant $\lambda = \frac{h}{p}$ partikelns

rörelsemängd

[10]

Waves and Quanta.

The quantum relation, energy $=h \times \text{frequency}$, leads one to associate a periodical phenomenon with any isolated portion of matter or energy. An observer bound to the portion of matter will associate with it a frequency determined by its internal energy, namely, by its "mass at rest." An observer for whom a portion of matter is in steady motion with [11]

Ger en slags förklaring till väteatomens kvantiserade energinivåer: $villkoret \ 2\pi r = n\lambda \ \text{måste vara uppfyllt}$ Jfr stående våg på sträng:

Fotoner: p =

Materiens vågegenskaper

de Broglie (1924):

"materievåglängd"

Varje partikel kan tillskrivas en våglängd

Plancks konstant

partikelns rörelsemängd

[10]

Waves and Quanta.

The quantum relation, energy = $h \times$ frequency, leads one to associate a periodical phenomenon with any isolated portion of matter or energy. An observer bound to the portion of matter will associate with it a frequency determined by its internal energy, namely, by its "mass at rest." An observer for whom a portion of matter is in steady motion with [11]

Ger en slags förklaring till väteatomens kvantiserade energinivåer:

villkoret $2\pi r = n\lambda$ måste vara uppfyllt

Jfr stående våg på sträng:

Bekräftades 1927

[12]

G. P. Thomson (UK)

Davisson & Germer (USA)

Materiens vågegenskaper

Elektronen - våg eller partikel?

https://www.youtube.com/watch?v=mhfdwH5Kdbc

Jämför med ljusinterferens:

Materiens vågegenskaper

Elektronen - våg eller partikel?

Ingetdera!

Elektroner

- sänds ut och detekteras som partiklar
- sannolikheten att hitta en elektron någonstans beskrivs med en våg

https://www.youtube.com/watch?v=eCFTVdExxPA

Jämför med ljusinterferens:

Kvantmekanik (tidig)

(en formulering av)

I kvantmekaniken (1925-26) beskrivs partiklar med vågfunktioner $\psi(x,t)$

Vågfunktionen för en elektron i första skalet i en väteatom (fås om man löser Schrödingerekvationen för väteatomen):

$$\psi_{100}(\mathbf{r}) = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{r}{a_0}},$$

där

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{\mu e^2}.$$

Sannolikheten att hitta elektronen mellan avstånden R_2 och R_1 (från kärnan):

$$P(R_2, R_1) = 4\pi \int_{R_1}^{R_2} r^2 \psi_{100}^2 dr$$

har att göra med sannolikheten att hitta en partikel i (x, t)

Heisenberg

Schrödinger

FSS

Kvantmekanik (tidig) vs. klassisk mekanik

Lägesfunktion

Newton II

Klassisk mekanik

$$R = m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$

Representerar omgivningens inverkan

Kvantmekanik

$$\psi(x,t)$$

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + U\psi$$

Vågfunktion

Schrödingerekvationen

Sannolikheten att hitta partikeln mellan x_1 och x_2 :

$$P(x_1, x_2) = \int_{x_1}^{x_2} |\psi|^2 dx$$

Kvantmekanik (tidig)

Heisenbergs obestämdhetsrelation

Heisenberg (1927):

Omöjligt att bestämma en partikels läge och rörelsemängd samtidigt!

oskärpa i oskärpa rörelsemängd i läge

Heisenbergs obestämdhetsrelation

Heisenberg (1927):

Omöjligt att bestämma en partikels läge och rörelsemängd samtidigt!

oskärpa i oskärpa rörelsemängd i läge

Ex: Ljus genom enkelspalt

Använd fotonmodellen och betrakta en foton i spaltöppningen. Fotonens rörelsemängd är \vec{p}

Minska spaltbredden

- \rightarrow mindre $\Delta x \rightarrow$ större Δp_x
- → mer utsmetad intensitetsfördelning

Heisenbergs obestämdhetsrelation

Heisenberg (1927):

Omöjligt att bestämma en partikels läge och rörelsemängd samtidigt!

oskärpa i oskärpa rörelsemängd i läge

Ex: Ljus genom enkelspalt

Använd fotonmodellen och betrakta en foton i spaltöppningen. Fotonens rörelsemängd är \vec{p}

Minska spaltbredden

- \rightarrow mindre $\Delta x \rightarrow$ större Δp_x
- → mer utsmetad intensitetsfördelning

Jfr vågmodellen:

Läget runt 1927

	Partikelegenskaper	Vågegenskaper
Materia	$p = mv$ $W_k = \frac{mv^2}{2}$ $\boxed{R = \dot{p}}$ Ja! (mekanik) $p = \gamma mv$ $E_k = (\gamma - 1)mc^2$	$\lambda = \frac{h}{p} \qquad i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + U\psi$ Ja! (kvantmekanik)
Strålning	$p = \frac{h}{\lambda} \qquad W = hf$ Ja! (fotonmodellen)	E,B Ja! (elektromagnetism, optik)

Dubbelspaltexperiment med fotoner (2005)

FSS

Efter 1927?

Efter 1927?

Efter 1927?

Läget idag

Ett sätt at se på det:

Läget idag

Dubbelspaltexperiment med fotoner (2005)

[9]